Accelerated Gradient Descent Escapes Saddle Points Faster than Gradient Descent

نویسندگان

  • Chi Jin
  • Praneeth Netrapalli
  • Michael I. Jordan
چکیده

Nesterov's accelerated gradient descent (AGD), an instance of the general family of"momentum methods", provably achieves faster convergence rate than gradient descent (GD) in the convex setting. However, whether these methods are superior to GD in the nonconvex setting remains open. This paper studies a simple variant of AGD, and shows that it escapes saddle points and finds a second-order stationary point in $\tilde{O}(1/\epsilon^{7/4})$ iterations, faster than the $\tilde{O}(1/\epsilon^{2})$ iterations required by GD. To the best of our knowledge, this is the first Hessian-free algorithm to find a second-order stationary point faster than GD, and also the first single-loop algorithm with a faster rate than GD even in the setting of finding a first-order stationary point. Our analysis is based on two key ideas: (1) the use of a simple Hamiltonian function, inspired by a continuous-time perspective, which AGD monotonically decreases per step even for nonconvex functions, and (2) a novel framework called improve or localize, which is useful for tracking the long-term behavior of gradient-based optimization algorithms. We believe that these techniques may deepen our understanding of both acceleration algorithms and nonconvex optimization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gradient Descent Can Take Exponential Time to Escape Saddle Points

Although gradient descent (GD) almost always escapes saddle points asymptotically [Lee et al., 2016], this paper shows that even with fairly natural random initialization schemes and non-pathological functions, GD can be significantly slowed down by saddle points, taking exponential time to escape. On the other hand, gradient descent with perturbations [Ge et al., 2015, Jin et al., 2017] is not...

متن کامل

Stabilizing Adversarial Nets with Prediction Methods

Adversarial neural networks solve many important problems in data science, but are notoriously difficult to train. These difficulties come from the fact that optimal weights for adversarial nets correspond to saddle points, and not minimizers, of the loss function. The alternating stochastic gradient methods typically used for such problems do not reliably converge to saddle points, and when co...

متن کامل

Stabilizing Adversarial Nets with Prediction Methods

Adversarial neural networks solve many important problems in data science, but are notoriously difficult to train. These difficulties come from the fact that optimal weights for adversarial nets correspond to saddle points, and not minimizers, of the loss function. The alternating stochastic gradient methods typically used for such problems do not reliably converge to saddle points, and when co...

متن کامل

Behavior of Accelerated Gradient Methods near Critical Points of Nonconvex Problems∗

We examine the behavior of accelerated gradient methods in smooth nonconvex unconstrained optimization. Each of these methods is typically a linear combination of a gradient direction and the previous step. We show by means of the stable manifold theorem that the heavyball method method does not converge to critical points that do not satisfy second-order necessary conditions. We then examine t...

متن کامل

Stabilizing Adversarial Nets With Prediction Methods

Adversarial neural networks solve many important problems in data science, but are notoriously difficult to train. These difficulties come from the fact that optimal weights for adversarial nets correspond to saddle points, and not minimizers, of the loss function. The alternating stochastic gradient methods typically used for such problems do not reliably converge to saddle points, and when co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1711.10456  شماره 

صفحات  -

تاریخ انتشار 2017